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Abstract

The functional role of murine TLR8 in the inflammatory response of the central nervous system (CNS) remains unclear.
Murine TLR8 does not appear to respond to human TLR7/8 agonists, due to a five amino acid deletion in the ectodomain.
However, recent studies have suggested that murine TLR8 may be stimulated by alternate ligands, which include vaccinia
virus DNA, phosphothioate oligodeoxynucleotides (ODNs) or the combination of phosphothioate poly-thymidine
oligonucleotides (pT-ODNs) with TLR7/8 agonists. In the current study, we analyzed the ability of pT-ODNs to induce
activation of murine glial cells in the presence or absence of TLR7/8 agonists. We found that TLR7/8 agonists induced the
expression of glial cell activation markers and induced the production of multiple proinflammatory cytokines and
chemokines in mixed glial cultures. In contrast, pT-ODNs alone induced only low level expression of two cytokines, CCL2
and CXCL10. The combination of pT-ODNs along with TLR7/8 agonists induced a synergistic response with substantially
higher levels of proinflammatory cytokines and chemokines compared to CL075. This enhancement was not due to cellular
uptake of the agonist, indicating that the pT-ODN enhancement of cytokine responses was due to effects on an intracellular
process. Interestingly, this response was also not due to synergistic stimulation of both TLR7 and TLR8, as the loss of TLR7
abolished the activation of glial cells and cytokine production. Thus, pT-ODNs act in synergy with TLR7/8 agonists to induce
strong TLR7-dependent cytokine production in glial cells, suggesting that the combination of pT-ODNs with TLR7 agonists
may be a useful mechanism to induce pronounced glial activation in the CNS.
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Introduction

Neuroinflammation, including cytokine/chemokine production

by resident glial cells, is a common response to various types of

central nervous system (CNS) insults, including viral infections [1–

5]. Understanding the events that trigger the initiation of

neuroinflammatory responses is important in determining how

viruses induce damage to the CNS. The host recognizes viral

infections through the detection of pathogen-associated molecular

patterns (PAMPs), repeated structural motifs generated by

microbes that are not normally found in the host [6,7]. These

PAMPs are recognized by pattern recognition receptors (PRRs)

expressed by multiple cell types including dendritic cells and

macrophages. Activation of these cells via PRRs promotes rapid

inflammatory and anti-microbial responses [6]. Two PRRs that

are important for the recognition of viruses are toll-like receptor 7

(TLR7) and TLR8. These two receptors are closely related

endosomal TLRs that recognize guanosine and uridine-rich viral

ssRNA, including RNA from virus families that are known to

infect the CNS and induce neurological disease [8–11]. TLR7 and

TLR8 can also be stimulated by synthetic molecules like

imidazoquinoline compounds and guanosine analogs, which are

currently used as anti-viral therapeutics [12–14].

The function of TLR7 and TLR8 in activation of dendritic cells

in the periphery is well described [8,9,11,15,16]. However, the

role of these receptors in the CNS immune response is still under

investigation. In the brain, TLR7 is readily detected on ependymal

cells and brain capillary endothelia [17,18]. Following infection,

TLR7 expression can also be detected on a number of cell types

including astrocytes, microglia, endothelia and cerebellar granular

neurons [18]. TLR7 can contribute to innate immune responses in

the CNS as demonstrated by both agonist and viral infection

studies [17,19–22].

The impact of TLR8 in the CNS is not as clear, particularly in

mouse models of virus infection. Although TLR8 is functional in

humans, several studies using TLR7-deficient mice have indicated

that TLR8 is not functional in mice [9,11,13]. Murine TLR8

contains a five amino acid deletion in the ectodomain, which

appears to be required for ligand recognition, but not for

dimerization or intracellular localization [23]. However, recent

studies have suggested that TLR8 may be functional in mice

through the recognition of an alternative ligand. Vaccinia virus

DNA or synthetic phosphothioate poly-adenosine (pA) or poly-

thymidine (pT) oligonucleotides (ODNs) were shown to stimulate

murine cells via TLR8 [24]. Murine TLR8-transfected human

embryonic kidney-293 (HEK-293) cells were activated when

stimulated with a combination of TLR7/8 agonist CL075

(3M002) and pT-ODNs [25]. Thus, pT-ODNs either alone or

in combination with TLR7/8 agonists may provide a mechanism

to study the activation of murine TLR8 in the CNS.
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In the current study, we analyzed the ability of pT-ODNs, either

independently or in combination with CL075, to induce activation

of glial cells. We found that pT-ODNs alone did not induce

significant glial activation. Interestingly, the combination of pT-

ODNs with CL075 induced a substantially heightened cytokine

response compared to CL075 alone, but did not alter expression of

other glial activation markers. TLR8, along with TLR7, was readily

detected on both primary microglia and astrocytes. However,

studies with TLR7-deficient mice demonstrated the glial activation

and cytokine induction associated with either CL075 or pT-ODN/

CL075 stimulation was dependent on TLR7. Therefore, although

TLR8 is expressed on murine microglia and astrocytes, it appears to

only have a minor influence on the innate immune responses of glial

cells to either conventional or alternative ligands. This study differs

from previous studies with TLR8-transfected HEK cells and

suggests that basal levels of murine TLR8 expression may not be

sufficient for cellular activation via conventional or alternative

TLR8 ligands. Furthermore, it demonstrates that alternative TLR8

ligands such as pT-ODNs can also enhance TLR7-mediated

responses, independently of TLR8.

Results

TLR8 expression on mixed cortical cells
Neither TLR7 nor TLR8 is readily detected on glial cells by

immunohistochemistry staining of brain tissue [18]. However, glial

cells do respond to TLR7/ TLR8 agonist stimulation in vivo

indicating that they do express TLR7 and/or TLR8 [19]. Analysis

of primary cortical cultures composed primarily of astrocytes but

also containing microglia, demonstrated the expression of both

TLR7 and TLR8 (Fig. 1A). Analysis of purified astrocytes or

microglia also indicated TLR7 and TLR8 expression by both cell

types, although on microglia TLR8 was expressed at higher levels

than TLR7 (Fig. 1B, C).

Glial Cell Activation Following CL075/pT-ODN
Stimulation

Time course analysis of mixed cortical cells stimulated with the

TLR7/8 agonist CL075 showed four primary profiles of gene

expression. mRNA expression of G-protein coupled receptor 84

(Gpr84) and type I interferon beta (Ifnb1) peaked within 3 hours post

stimulation (hps) (Fig. 2A, B), while mRNA expression of

proinflammatory cytokines such as Ccl2 and Tnf peaked within 6–

12 hps (Fig. 2C, D). mRNA for the microglia activation marker F4/

80 was upregulated at later time points with peak expression at or

after 48 hps (Fig. 2F). The astrocyte activation marker glial fibrillary

acidic protein (Gfap) was also upregulated in this time frame;

however, this low increase was below the detection limit (one cycle,

2 fold) for real-time PCR (Fig. 2E). In contrast, Tlr7 and Tlr8

mRNA levels were downregulated following CL075 stimulation

(Fig. 2G, F), which is similar to what is observed in bone marrow

derived dendritic cells following TLR7 stimulation [26].

In comparison to CL075 stimulation, stimulation with pT-

ODNs alone failed to induce expression of proinflammatory

cytokines or glial activation markers (Fig. 2). The only detectable

increase in cytokine mRNA production following pT-ODN

stimulation alone was Ifnb1 mRNA, although this was not

statistically significant (Fig. 2B). Dose curve analysis using 5–10

fold lower or higher concentrations of pT-ODNs also failed to

induce significant cytokine mRNA production (data not shown).

To examine whether pT-ODNs would alter the cytokine

response to TLR7/8 agonists, cells were stimulated with 1 mM

of pT-ODNs in combination with CL075. The costimulation with

pT-ODNs induced a substantial increase in cytokine mRNA

expression in glial cells compared to CL075 alone (Fig. 2B–D).

Interestingly, the combined agonists did not enhance expression of

glial activation markers Gfap or F4/80 and did not affect Tlr7 or

Tlr8 mRNA expression (Fig 2E–H).

Analysis of cytokine protein levels in supernatants from

stimulated cells demonstrated a similar response, with little to no

cytokine expression following pT-ODN stimulation with the

Figure 1. TLR7 and TLR8 protein expression on (A) primary
mixed cortical cells, (B) purified astrocytes and (C) purified
microglia. Primary cortical cells were generated as described in the
materials and methods. Cells were either cultured as a mixed cell
population or used to generate .95% pure microglia or astrocyte
cultures. At 7–10 days post culture, cells were analyzed for TLR7 or TLR8
expression by flow cytometry using rabbit anti-TLR7 (gray line) or goat
anti-TLR8 antibodies (black line). Data are shown in comparison to
secondary alone antibody (anti-rabbit 488, gray filled). Isotype controls
and rabbit anti-goat 488 antibodies were comparable to goat anti-
rabbit staining (data not shown). Data are representative of at least two
replicate experiments for each cell population.
doi:10.1371/journal.pone.0022454.g001
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exception of low levels of CCL2 and CXCL10 (Fig. 3E, H). In

contrast, significant production of cytokines was observed in

supernatants following CL075 stimulation and a synergistic effect

on cytokine production was observed in cells stimulated with both

pT-ODNs and CL075 (Fig. 3). Similar results were observed with

5 mM of pT-ODNs in combination with 20 or 100 mM of CL075

Figure 2. mRNA expression by primary cortical cells following pT-ODN/CL075 co-stimulation. Primary cortical cultures were generated as
described in materials and methods. Glial cells were stimulated with 20 mM of CL075 and/or 1 mM pT-ODN. RNA was isolated from cells at indicated
times post stimulation. RNA samples were processed for real-time quantitative RT-PCR analysis. Data were calculated relative to the expression of
Gapdh mRNA and then compared as fold change relative to the average of mock infected controls. Data are the mean 6 SEM of three wells per group
and are representative of two replicate experiments. Statistical analysis was completed by two-way ANOVA with Newman-Keuls post test. Asterisks (*)
directly above data symbols represent a statistically significant difference compared to media alone controls. Number sign (#) above data symbols
represent a significant difference between CL075 and CL075/pT-ODN stimulated groups. * or # P,0.05, ** or ## P,0.01, and *** or ### P,0.001.
doi:10.1371/journal.pone.0022454.g002
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(data not shown). Thus, although pT-ODNs did not induce glial

stimulation by themselves, they did enhance the cytokine response

induced by CL075.

Microglia often alter their morphology following activation. Iba1

positive microglia cells in primary cultures demonstrated a shift in

morphology towards an amoeboid-like phenotype following CL075

stimulation, but not pT-ODN stimulation (Fig. 4A–C). CL075/pT-

ODN stimulated cells had similar morphology to CL075 stimulated

cells (Fig. 4D). This indicates that CL075, but not pT-ODNs were

capable of activating primary microglia cells.

pT-ODN/CL075-induction of cytokines is TLR7 dependent
Previous studies demonstrated that addition of pT-ODNs

enhanced cytokine responses induced by CL075 in murine

TLR8-transfected HEK cells, but not TLR7-transfected HEK cells

[25]. To examine whether TLR7 mediated the pT-ODN/CL075-

induced cytokine production, cortical cells from TLR7-deficient

mice were stimulated with pT-ODNs with or without CL075.

Surprisingly, the absence of TLR7 ablated the majority of the

cytokine/chemokine response to pT-ODN/CL075 stimulation,

including the induction of type I IFN responses (Fig. 3, 5A). Thus, in

Figure 3. CL075/pT-ODN-induced production of (A–D) proinflammatory cytokines and (E–H) chemokines by primary cortical cells is
dependent on TLR7. Primary cortical cultures from wildtype or TLR7-deficient mice were stimulated with 20 mM CL075 and/or 1 mM pT-ODN.
Supernatants were collected at 48 hps and analyzed for cytokine and chemokine levels using a cytokine 20-plex multi-plex bead array. Data were
calculated as pg/ml using in-plate standard curves. Data are the mean 6 SEM of three wells per group and are representative of two replicate
experiments. Statistical analysis was completed by One-way ANOVA with a Newman-Keuls post test within each group. Symbols above columns
indicate a statistically significant difference compared to media controls. * P,0.05, ** P,0.01, and *** P,0.001 for wildtype mice; # P,0.05, ##
P,0.01, and ### P,0.001 for TLR7-deficient mice. Symbols above lines between two columns indicate a statistically significant difference between
the two indicated groups.
doi:10.1371/journal.pone.0022454.g003
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murine glial cells, the ability of pT-ODN to provide costimulation to

TLR7/8 agonists was mediated via TLR7 stimulation.

Not surprisingly, the cellular responses to CL075 that were not

affected by pT-ODNs were also dependent on TLR7. This included

the downregulation of Tlr8 mRNA and the induction of F4/80

mRNA (Fig. 5B–D). The morphological changes observed by

CL075 or pT-ODN/CL075 treatment in Iba1 positive microglia

(Fig.4 C, D) were not observed in cells from TLR7-deficient mice

(Fig. 4E, F) indicating a necessity of TLR7 in CL075-induced

microglia activation. However, the slight increase in Gfap mRNA

was still observed in TLR7-deficient cultures (Fig. 5C). Therefore,

CL075-induced glial activation was dependent on TLR7, with the

exception of a low level of Gfap mRNA upregulation.

pT-ODNs do not directly bind to TLR7/8 agonists, and do
not affect internalization of the agonist

The experiments with TLR7 deficient mice indicate that pT-

ODNs enhance the proinflammatory cytokine response to TLR7/

8 agonists through stimulation of TLR7, even though pT-ODNs

did not induce a strong innate immune response on their own. To

examine the mechanism by which pT-ODNs could enhance

TLR7/8 agonist stimulation, we examined whether pT-ODNs

directly bound TLR7/8 agonists. We utilized rhodamine-labeled

TLR7 agonist CL264, which induces similar stimulation to

CL075, and examined whether pT-ODNs directly interacted with

CL264 by measuring fluorescence polarization in the presence or

absence of pT-ODNs. No difference in polarization was observed

(data not shown). Confocal analysis using lyso-tracker green and

rhodamine-labeled CL264 indicated no difference in cellular

localization with the addition of pT-ODNs (Fig. 6). Similarly,

analysis of cellular uptake of rhodamine-labeled CL264 demon-

strated that the addition of pT-ODNs did not increase the amount

of TLR7 agonist taken up by the cell (Fig. 7). Thus, pT-ODNs do

not appear to affect TLR7/8 agonist uptake or internalization,

indicating that the effect of pT-ODNs on cytokine responses

appears to be due to enhanced TLR7 signaling within the cell.

pT-ODNs induce a slight but detectable cytokine
response in the absence of TLR7

The above results indicate that the strong cytokine response

induced by pT-ODN/CL075 stimulation was mediated by TLR7,

not TLR8. However, in the absence of TLR7, a measurable, albeit

minimal, increase in CCL2 and CXCL10 was observed following

pT-ODNs stimulation alone in some, but not all, experiments

Figure 4. CL075, but not pT-ODN induces changes in microglia morphology. Primary cortical cultures from wildtype mice were stimulated
with 20 mM CL075 and/or 1 mM pT-ODN. After 48 hrs, cells were fixed and then stained for the microglia/macrophage marker, Iba1 using an
Alexafluor-488 conjugated anti-rabbit antibody for detection. Iba1 positive cells in (A) mock (unstimulated) and (B) pT-ODN-stimulated cultures were
primarily elongated with only a few amoeboid cells. In contrast, Iba1 positive cells in (C) CL075 or (D) CL075/pT-ODN stimulated cultures were
completely amoeboid in appearance. However, Iba1 positive cells from (E–F) TLR7-deficient mice did not take on the amoeboid appearance after
stimulation with (E) CL075 or (F) CL075/pT-ODN. Images are representative of cells in each well and are the results of one of two replicate
experiments.
doi:10.1371/journal.pone.0022454.g004
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(Fig. 3E, H, 8A–B, data not shown). This response suggested that

pT-ODNs may be inducing a sub-optimal response that was not

mediated via TLR7. To examine whether this sub-optimal

response was mediated by endosomal TLRs, we utilized Unc93b1

3D mutant mice, which are deficient in transport of TLRs from

the ER to the endosome. Interestingly, the cytokine response was

completely absent in glial cells from Unc93b1 3D mice indicating

that even the suboptimal cytokine response was dependent on

TLR signaling (Fig. 8A–B). This response was not mediated by

pT-ODN binding to TLR9 as TLR9 deficiency did not influence

cytokine responses (data not shown). This response is also not likely

to be mediated by TLR3, since ODNs do not induce TLR3

signaling. The dependency of the cytokine response on Unc93b1

was in contrast to 1.5 fold Gfap mRNA upregulation, which was

still observed in Unc93b1 3D mice suggesting that the low level of

Gfap upregulation was not an endosomal TLR-trigged mechanism.

Thus, although the majority of the induction of innate immune

responses by pT-ODNs in glial cells appears to be mediated via

TLR7, there does appear to be a low, but detectable, cytokine

response mediated by TLR8.

Discussion

In the present study, we found that the TLR7/8 agonist CL075

induced the expression of glial cell activation markers and induced

the production of multiple proinflammatory cytokines and

chemokines. Addition of pT-ODN enhanced the expression of

proinflammatory cytokines and chemokines. Both the CL075-

induction of these responses and the enhancement of these

responses by pT-ODN were dependent on TLR7. TLR7 agonists

are currently being analyzed as potential therapeutics for the

treatment of neurological maladies [27,28]. However, the innate

immune response to TLR7 agonists in the CNS is weak compared

to other TLR ligands [19]. The ability of pT-ODNs to enhance

TLR7/8 agonist-induced glial activation in this study suggests that

pT-ODNs may be able to enhance the therapeutic potential of

TLR7/8 agonists in the CNS.

The dependency of pT-ODN/CL075 stimulation on TLR7 in

this study contrasts with previous reports where the addition of 13

to 20-mer pT-ODNs enhanced TLR7/8 agonist stimulation of

murine TLR8, and suppressed TLR7/8 agonist stimulation of

murine TLR7 in transfected HEK-293 cells [25,29–31]. Periph-

eral blood mononuclear cells from TLR7-deficient mice also

responded to pT-ODN/CL075 stimulation; however, this re-

sponse was approximately 2 fold lower than the response in

wildtype mice [25]. It is possible that murine TLR8 interacts more

strongly with the adaptor molecule for TLR7/8, Myeloid

Differentiation Factor 88 (MyD88), in human cells than in mouse

cells and thus functions more efficiently in human cells than mouse

cells to induce NFkB-related responses. Additionally, there may be

adaptor or regulatory proteins expressed in astrocytes and

Figure 5. TLR7 is required for CL075/pT-ODN upregulation of cell activation markers and downregulation of Tlr mRNAs. Primary
cortical cells from TLR7-deficient mice were cultured and stimulated as described in Fig. 2. RNA samples were processed for real-time quantitative RT-
PCR analysis. Data were calculated as described in Fig. 2. Data are the mean 6 SEM of three wells per group and are representative of two replicate
experiments. Statistical analysis was completed by Two-way ANOVA with Newman-Keuls post test. Asterisks (*) directly above data symbols represent
a statistically significant difference compared to media alone controls. *** P,0.001.
doi:10.1371/journal.pone.0022454.g005
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microglia, but not in HEK cells that affect TLR8 signaling. It is

also possible that the TLR8 transfected HEK cells express

substantially higher levels of TLR8 than primary astrocytes and

microglia and that the normal level of murine TLR8 expressed by

glial cells is not sufficient for triggering detectable NFkB-related

cytokine responses.

The current study did not rule out the possibility of the ability of

TLR8 to induce a small level of cytokine production by glial cells

in response to pT-ODN signaling. pT-ODNs induced a low level

of CCL2 and CXCL10 in both wildtype and TLR7-deficient mice

(Fig. 3). Additionally, a slight but insignificant increase in Ifnb1

mRNA expression was also observed (Fig. 5A). These responses

were not observed in glial cells derived from Unc93b1 3D mice

indicating that an endosomal TLR was responsible for this low

level response. The endosomal response is not likely to be due to

TLR3 signaling since ODNs either do not induce TLR3 signaling

and in some instances can even inhibit TLR3-mediated responses

[32,33]. Since the low-level induction of CCL2 and CXCL10

following pT-ODNs stimulation was still observed in TLR7- and

TLR9- deficient mice, this cytokine response may be mediated by

TLR8. Thus, murine TLR8 may be able to contribute to a

neuroinflammatory response, although the significance of this

response may be minimal compared to other TLR-mediated

responses, which can induce pronounced glial activation.

TLR8 expression has also been detected on neurons in the

developing mouse brain and stimulation of murine cortical

neurons with the TLR7/8 agonist, R848, induced caspase 3

activation and inhibited dendrite outgrowth [34]. The signal

transduction involved in TLR8-induced caspase 3 activation was

not dependent on MyD88 or NFkB, suggesting an alternative

pathway of signaling in neurons [35]. We did not detect any cell

death in the mixed glia cultures, either with TLR7/8 agonists

alone or with pT-ODN costimulation suggesting that TLR8 is not

inducing cell death in glial cells.

The mechanism by which pT-ODNs enhances TLR7-induced

cytokine responses in glial cells appears to be mediated at the

intracellular level. Addition of pT-ODNs alone did not induce a

significant cytokine response, with the exception of low level CCL2

and CXCL10 production (Fig. 3E, H). Thus, the increased

cytokine response in co-stimulated cells does not appear to be due

to additive or synergistic effects of signaling via another PRR.

Furthermore, the complete ablation of this response in the absence

of TLR7 indicates that the pT-ODN response is not due to a

synergistic effect between two different PRRs. The addition of pT-

ODNs did not enhance cellular uptake of TLR7/8 agonists and

did not alter the overall amount of agonist in the cell over time

(Fig. 7). Furthermore, no difference was found in agonist

localization to the endosome (Fig. 6). Thus, the mechanism by

Figure 6. pT-ODNs do not alter endosomal localization of TLR7/8 agonists. Primary mixed cortical cells were grown on 8-chambered
coverglass until semi-confluent. Cells were stimulated with 20 mM of rhodamine-labeled CL264 (left column) or 20 mM of rhodamine-labeled CL264
and 1 mM pT-ODN (right column) along with lyso-tracker green for 30 minutes. Each chamber was washed with media to remove unbound CL264
and analyzed by confocal microscopy. Images are representative of cells within the wells, with cells selected at random for imaging. Cells incubated
with pT-ODNs alone or unstimulated cells did not have detectable rhodamine fluorescence (data not shown). Cells were followed for 3 h, with no
significant differences noted in agonist localization.
doi:10.1371/journal.pone.0022454.g006
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which pT-ODNs influence TLR7/8 agonist binding appears to be

at the level of agonist/receptor interaction. pT-ODNs may alter

the environment in the endosome to create a more favorable

environment for TLR7/8 agonist binding to TLR7 or they may

directly interact with either the TLR7/8 agonist or the receptor

inside the cell. It is also possible that pT-ODNs may stimulate cells

to shuttle TLR7 from the endoplasmic reticulum to the endosome

where it can interact more readily with TLR7/8 agonists. The

ability of pT-ODNs to act in synergy with TLR7/8 agonists to

induce strong TLR7-dependent cytokine production in glia cells

suggest that the combination of these ligands would result in

heightened neuroinflammatory responses in the CNS. Thus, pT-

ODNs may be useful in potentially enhancing the adjuvant/

therapuetic properities of TLR7/8 agonists in the CNS and other

tissues.

Materials and Methods

Mice
TLR7-deficient C57BL/6 mice [13] were kindly provided by S.

Akira (Osaka University, Osaka, Japan) and were backcrossed with

Inbred Rocky Mountain White (IRW) mice for at least 10

generations [19]. IRW mice and TLR7-deficient IRW mice were

used for the present study. Mice were genotyped to confirm TLR7

knockout allele as previously described [17,19]. Unc93b1 3D mice

were obtained from the Mutant Mouse Regional Resource Center

at University of California, Davis. All of the animal procedures were

approved by and conducted in accordance with the Louisiana State

University Animal Care and Use Committee guidelines or the

Rocky Mountain Laboratories Animal Care and Use Committee

guidelines under protocols LSU06-120 and RML2008-46.

Figure 8. pT-ODN stimulation induction of low level CCL2 and CXCL10 production is dependent on Unc93b1. Primary cortical cells
from wildtype C57BL/6 and C57BL/6 Unc93b1 3D mice were cultured and stimulated as described in Fig. 2. 5 mM of pT-ODNs, instead of 1 mM pT-
ODN, was used in this study since this concentration induced optimal stimulation in cells from C57BL/6 mice in the presence or absence of 20 mM of
CL075. Samples for RNA were collected at 6 hps and processed for real-time quantitative RT-PCR analysis. Data were calculated as described in Fig. 2.
Data are the mean 6 SEM of three wells per group and are representative of two replicate experiments. Statistical analysis was completed by one-
way ANOVA with Newman-Keuls post test. Asterisks (*) directly above data symbols represent a statistically significant difference compared to media
alone controls. Asterisks above lines between two columns indicate a statistically significant difference between the two indicated groups. ** P,0.01,
*** P,0.001.
doi:10.1371/journal.pone.0022454.g008

Figure 7. pT-ODNs do not alter uptake of TLR7/8 agonists. Primary cortical cells were grown in 24-well plates and stimulated with rhodamine-
labeled CL264 in the presence or absence of 1 mM pT-ODN. At the indicated times, cells were washed 3X with PBS and fluorescence intensity
measured (fluorescence units/ml/well). Data are the mean 6 SEM of three wells per group and are representative of two replicate experiments. No
significant differences were observed using a two-way ANOVA analysis between rhodamine-CL264 and rhodamine-CL264 with pT-ODN.
doi:10.1371/journal.pone.0022454.g007

pT-ODN Enhance TLR7/8 Agonists via TLR7
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Primary cortical cultures
Primary mixed cortical cultures were generated from the

cortical tissue of 1- to 2-day-old neonatal mice. Intact brains were

removed and dissected free of meninges. The midbrain and

cerebellum were removed and the cortices were placed in 2%

glucose/PBS and gently triturated using a 10 ml pipet. Cells were

pelleted at 244 g for 5 min, and a single-cell suspension was made

by triturating with a 1-ml syringe and 20 gauge needle. Cells were

cultured in 25-cm2 Primaria tissue culture flasks (BD Bioscience) in

Dulbecco’s modified Eagle’s medium (DMEM) containing 10%

fetal bovine serum (FBS), 100 units penicillin and streptomycin

and maintained at 37uC, 5% CO2. When cultures reached 90 to

95% confluency in the flask, they were treated with 0.25%

Trypsin, 1 mM EDTA in HBSS (0.25% Trypsin-EDTA, Gibco)

for 5 minutes, harvested and replated in 12-well plates for agonist

stimulation or 6-well plates for flow cytometry analysis. Immuno-

histochemical analysis of these cultures demonstrated that the

primary cell type was astroglia, but also contained a number of

microglia. Detection of neurons and other cells was rare.

Astrocyte and microglia cultures
For the generation of astrocyte cultures and for analyzing TLR7

and TLR8 expression in astrocytes and microglia, single cell

suspensions were generated as described above. However,

following trituration, cells were suspended in 2 ml of 70% percoll

and transferred to the bottom of 30%, 0% step percoll gradient.

The gradients were centrifuged at 500 g for 20 min. The

microglia cell population was collected between 30% and 70%

percoll layers, washed in PBS, and seeded at 56105 in Primaria T-

25 flasks containing DMEM with 10% FBS and 20% LADMAC

culture supernatant (mouse bone marrow cells producing

macrophage colony stimulating factor/M-CSF). The astrocyte

rich cell population was collected between 0% and 30% percoll

layers, washed in PBS, and seeded at 26105 cells in Primaria T-25

flasks containing DMEM with 10% FBS. When cells reached

confluency (7–10 days), flasks containing astrocyte rich cells (0/30

fraction) were orbitally shaken overnight at 250 RPM to remove

any remaining microglia as well as any oligodendrocytes.

Astrocytes were removed from the flasks by treating with 0.25%

Trypsin-EDTA (Gibco), and microglia were removed from

confluent T-25 flasks using a cell scraper for use in flow cytometric

analysis. Astrocyte cultures were greater than 95% GFAP positive

and microglia were greater than 95% F4/80 and Iba1 positive.

Cell Stimulation
When primary cortical cultures were approximately 80%

confluent, they were used for agonist stimulation. The TLR7/8

agonist CL075, a thiazoloquinoline compound also known as

3M002 (Invivogen, San Diego, CA) was prepared in endotoxin-

free water, aliquoted at stock concentrations of 20 mM and was

thawed only once prior to use. A 20-mer of pT-ODN (Invitrogen)

was prepared in endotoxin-free water, aliquoted at stock

concentrations of 2 mM and was thawed only once prior to use.

Cultures were stimulated with optimal concentrations of 20 mM of

CL075, and 1–5 mM of pT-ODN depending on experiment. In

costimulation experiments, 1 mM was optimal in cultures gener-

ated from IRW mice, whereas 5 mM was optimal in cultures from

C57BL/6 mice.

Flow Cytometry
Cells were analyzed for TLR7 and TLR8 protein expression by

intracellular staining. Cells were fixed for 20 min in 2%

paraformaldehyde, permeabilized with 0.1% saponin in PBS

(pH 7.0), and then incubated with rat anti-mouse CD16/CD32

antibodies (BD Biosciences) to block non-specific antibody binding

to Fc receptors. Cells were then incubated with polyclonal rabbit

anti-TLR7 antibody (Zymed), goat anti-TLR8 antibody (Capra-

logics), polyclonal rabbit anti-glial fibrillary acidic protein (GFAP)

antibody (Dako), mouse anti-F4/80 antibody (eBioscience), rabbit

anti-Iba1 antibody (Wako Inc.) or isotype control antibody

overnight at 4uC. The next day, cells were incubated with the

relative secondary antibody conjugated to AlexaFluor 488

(Invitrogen) in 0.1% saponin/PBS. Cells were washed twice with

PBS, resuspended in 3% BSA in PBS, and analyzed on a

FACSAria flow cytometer (BD Biosciences) using FACSDiva

software (BD Biosciences). Data analyses were performed using

FCS3 Express software (De Novo). GFAP, F4/80 and Iba1

antibodies were used to confirm cell purity.

Immunocytochemistry Analysis
Primary cortical cultures in 8-chamber culture slides (BD

Biosciences) at 70–80% confluency were used for immunocyto-

chemical analysis. Cells were fixed in 4% para-formaldehyde for

15 min, permeabilized with 0.1% Triton X-100 and 0.1% Sodium

citrate for 30 min, and blocked using normal donkey serum

blocking solution (PBS containing 2% donkey serum, 1% BSA,

0.1% cold fish skin gelatin, 0.1% Triton X-100, and 0.05% Tween

20) for 30 min. Cells were then incubated overnight at 4uC with

the appropriate concentration of GFAP, Iba1 or F4/80 in the

normal donkey serum blocking solution. Cells were stained using

antibody concentrations stated above for flow cytometric analysis.

Cells were then incubated with the relative secondary antibody

conjugated to AlexaFluor 488 (Invitrogen). The slides were

covered with a glass coverslip using Fluoro-Gel II with DAPI

mounting solution (Electron Microscopy Sciences). Images were

pseudocolored and overlaid using Olympus MicroSuite FIVE or

Nikon Elements NIS Basic Research software.

Analysis of mRNA Expression by Real-time PCR
Total RNA was extracted from primary cell cultures at 48 hps

using an RNA isolation kit (Zymo Research) following manufac-

turer’s instructions. RNA was treated with DNaseI for 30 minutes

and re-purified using an RNA clean-up kit (Zymo Research).

cDNA was generated from RNA samples using an iScript reverse

transcription kit (Bio-Rad) following manufacturer’s instructions.

cDNA was diluted 5 fold in RNase-free water prior to use in real-

time PCR. Primers for real-time PCR analysis are shown in

Table 1. All primers used for real-time PCR analysis were

designed using Primer3 software [36]. Primer sequences were

blasted against the National Center for Biotechnology Information

(NCBI) database to confirm that all primer pairs were specific for

the gene of interest and that no homology to other genes was

present. PCR reactions were prepared using SYBR green mix with

Rox (Bio-Rad) in a 10 ml volume with approximately 10 ng of

cDNA and 1.8 mM forward and reverse primers. Samples were

run in triplicate on an ABI PRISM 7900 Sequence Detection

System (Applied Biosystems). Analysis of dissociation curves was

used to confirm the amplification of a single product for each

primer pair per sample. Confirmation of a lack of DNA

contamination was achieved by analyzing samples that had not

undergone reverse transcription. Untranscribed controls had at

least a 1,000 fold lower expression level than analyzed samples or

were negative for all genes after 40 cycles. Gene expression was

quantified by the cycle number at which each sample reached a

fixed fluorescence threshold (CT). To control for variations in

RNA amounts among samples, data were calculated as the

difference in CT values (log2) between the housekeeping gene,
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Gapdh, and the gene of interest for each sample (DCT = CT Gapdh

2 CT gene of interest). Data were calculated as a percentage of

Gapdh expression for each gene of interest per sample. These data

were then calculated as fold expression relative to the average of

mock samples for each gene and each group.

Analysis of Cytokine And Chemokine Protein Expression
by Multiplex Bead Array

At 48 hps, supernatants from primary cortical cultures were

collected and stored at 280uC. Just before use, supernatants were

thawed to room temperature. Supernatants were analyzed for

cytokine and chemokine proteins using a 20-plex multiplex bead

array (BioSource) on a Luminex 100 instrument (Bio-Rad)

following manufacturer’s instructions. The cytokines analyzed

were CCL2 (MCP-1), CCL3 (MIP-1a), CXCL9 (MIG), CXCL10

(IP-10), fibroblast growth factor (FGF), granulocyte monocyte

colony stimulation factor (GM-CSF), interferon gamma (IFN-c),

Interleukin-1a (IL-1 a), IL-1 b, IL-2, IL-4, IL-5, IL-6, IL-10, IL-

12p40, IL-13, IL-17, CXCL1 (KC), TNF, and vascular endothe-

lial growth factor (VEGF). Data were calculated as pg/ml using a

standard curve from in-plate standards. CCL2 (MCP1), IFNa and

IFNb protein levels in culture supernatants were measured using

cytokine-specific ELISA assays (R&D Systems, Minneapolis, MN)

following manufacturer’s instructions.

Agonist uptake assay
Glial cells were grown in 96-well plates until over 80%

confluent. Cells were stimulated with mock, 1 mM pT-ODN,

20 mM rhodamine-labeled CL264 or 20 mM rhodamine-labeled

CL264 and 1 mM pT-ODN. Cells were then incubated at 37uC
and 5% CO2 for 30 min, 1 hr or 3 hr. At each time point, cells

were washed three times with PBS and analyzed for rhodamine

uptake. Cells were then lysed in lysis buffer (0.5% Triton X-100,

0.5% sodium deoxycholate, 150 mM NaCl, 50 mM Tris HCl,

pH 7.4 and 8 mM EDTA) to release fluorescence into solution,

and the fluorescence intensity was quantitated using a microplate

reader (Polar Star Omega, BMG Labtech).

Cellular localization assay
For confocal microscopy analysis, glial cells were grown on Lab-

TekH II Chamber # 1.5 coverglasses and then stimulated with

mock, 1 mM pT-ODN, 20 mM rhodamine-labeled CL264 or

20 mM-rhodamine labeled CL264 combined with 1 mM pT-

ODN. Lyso-tracker green at 5 mM was added to each well at the

same time. After 30 min incubation at 37uC and 5% CO2, cells

were washed with fresh media two times and kept in 0.1 M NH4Cl

in media. All images were taken using a Zeiss 510 Meta Confocal

Microscope.

Statistical Analysis
All of the statistical analyses were performed using Graph Pad

Prism software (San Diego, CA) using the appropriate statistical

test as described in the figure legends.
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